Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Maria Luisa Quijano, ${ }^{\text {a }}$ Justo
 Cobo, ${ }^{\text {a }}$ Manuel Nogueras ${ }^{\text {a }}$ and John Nicolson Low ${ }^{\text {b }}$

${ }^{\text {a }}$ Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ${ }^{\mathbf{b}}$ Department of Chemistry,
University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland.

Correspondence e-mail: che562@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.073$
$w R$ factor $=0.253$
Data-to-parameter ratio $=18.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-Amino-6-(2,2-diethoxyethoxy)-2-(methylsulfanyl)pyrimidine

The supramolecular structure of the title compound, $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$, consists of a ribbon of alternating centrosymmetric $R_{2}^{2}(8)$ and $R_{2}^{2}(18)$ rings.

Comment

The title compound, (I), was prepared as an intermediate for the preparation of fused pyrimidine systems in our ongoing programme aimed at the development of novel syntheses of fused heterocyclic systems. The bond lengths and angles show no unusual features.

Received 21 June 2006
Accepted 26 June 2006

Atom N4 in the molecule at (x, y, z) acts via $\mathrm{H} 4 A$ as a hydrogen-bond donor to atom N 3 in the molecule at ($1-x$, $1-y,-z$), so generating by inversion an $R_{2}^{2}(8)$ (Bernstein et al., 1995$)$ ring centred at $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$. Atom N 4 at (x, y, z) acts as a hydrogen-bond donor via atom $\mathrm{H} 4 B$ to atom O62 in the molecule at $(-x, 1-y, 1-z)$, so generating by inversion an $R_{2}^{2}(18)$ ring centred at $\left(0, \frac{1}{2}, \frac{1}{2}\right)$. Propagation by inversion of these two hydrogen bonds then generates a chain of alternating $R_{2}^{2}(8)$ and $R_{2}^{2}(18)$ rings running parallel to the [101] direction with the $R_{2}^{2}(8)$ rings centred at $\left(\frac{1}{2}-n, \frac{1}{2}, n\right)(n=$ zero or an integer) and the $R_{2}^{2}(18)$ rings centred at $\left(n, \frac{1}{2}, \frac{1}{2}-n\right)(n=$ zero or an integer). There are no direction-specific interactions between adjacent chains.

Experimental

To a solution of 4-amino-2-(methylsulfanyl)pyrimidin-6(1H)-one (20 mmol) in dry dimethylformamide (40 ml) was added solid anhydrous sodium carbonate (30 mmol). The mixture was stirred at room temperature for 10 min , bromoacetaldehyde diethyl acetal (60 mmol) was added and the final mixture heated at 363 K for 15 h . Water $(20 \mathrm{ml})$ was added and the mixture was then poured on to crushed ice. The resultant solid was collected by filtration and washed with cold water to give the title compound in 85% yield. This solid was recrystallized from methanol to give light-yellow crystalline micaceous blocks. HRMS found 273.1161, calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ 273.1147.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=273.35$
Triclinic, $P \overline{1}$
$a=7.2278$ (8) \AA
$b=9.6358$ (9) A
$c=10.0852(10) \AA$
$\alpha=81.197$ (9) ${ }^{\circ}$
$\beta=82.390(7)^{\circ}$
$\gamma=78.818(8)^{\circ}$

Data collection

Bruker-Nonius KappaCCD diffractometer
Thick-slice φ and ω scans
Absorption correction: multi-scan (EVALCCD; Duisenberg et al., 2003)
$T_{\text {min }}=0.884, T_{\text {max }}=0.967$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1062 P)^{2} \\
&+1.0232 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.70 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.53 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.253$
$S=1.02$
3000 reflections
166 parameters

H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H4A $\cdots \mathrm{N3}^{\mathrm{i}}$	1.00	2.07	$3.052(6)$	167
N4-H4B ${ }^{\mathrm{ii}}$	0.91	2.05	$2.919(6)$	158

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x,-y+1,-z+1$.
H atoms were treated as riding atoms, with aromatic $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$, aliphatic $\mathrm{C}-\mathrm{H}=1.00 \AA$ and $\mathrm{CH}_{2} \mathrm{C}-\mathrm{H}=0.99 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, methyl $\mathrm{C}-\mathrm{H}=0.98 \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{N}-\mathrm{H}=0.92$ and $1.00 \AA$, with $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{N})$. In the case of atom N 4 , atoms $\mathrm{H} 4 A$ and $\mathrm{H} 4 B$ were located in a difference map, refined and then treated as riding atoms in the latter stages of refinement. The difference map showed that the peak related to $\mathrm{H} 4 A$ was extended from N 4 lying along the $\mathrm{N} 4 \cdots \mathrm{~N} 3^{\mathrm{i}}$ [symmetry code: (i) $1-x, 1-y,-z]$ vector. The methyl H atoms of the methylsulfanyl group were modelled as six equally spaced half-H atoms. The crystal quality was generally poor due to the micaceous habit of the crystals; this has resulted in a high $R_{\text {int }}$ value and a low ratio of observed/ unique reflections.

Data collection: COLLECT (Bruker-Nonius, 2004); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

MLQ, MN and JC thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support.

Figure 1
A view of the molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms as spheres of arbitrary radii.

Figure 2
A stereoscopic view of the ribbon formed by alternating $R_{2}^{2}(8)$ and $R_{2}^{2}(18)$ centrosymmetric dimers. H atoms bonded to C atoms have been omitted.

References

Bernstein, J., Davis, R., Shimoni, L. \& Chang, N.-L. (1995). Agnew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. \& Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.

organic papers

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

